

Nitrogen flow network and energy performance in contrasted organic farms

BELLANGER Quentin^{1*}, BELINE Fabrice¹, WILFART Aurélie¹, VERGELY Fanny¹, EVENAT Yann², BIZE Niels², HARCHAOUI Souhil¹

¹INRAE Institut Agro, SAS, 35000 Rennes, France; ²Réseau GAB-FRAB, 35510 Cesson-Sevigné, France.

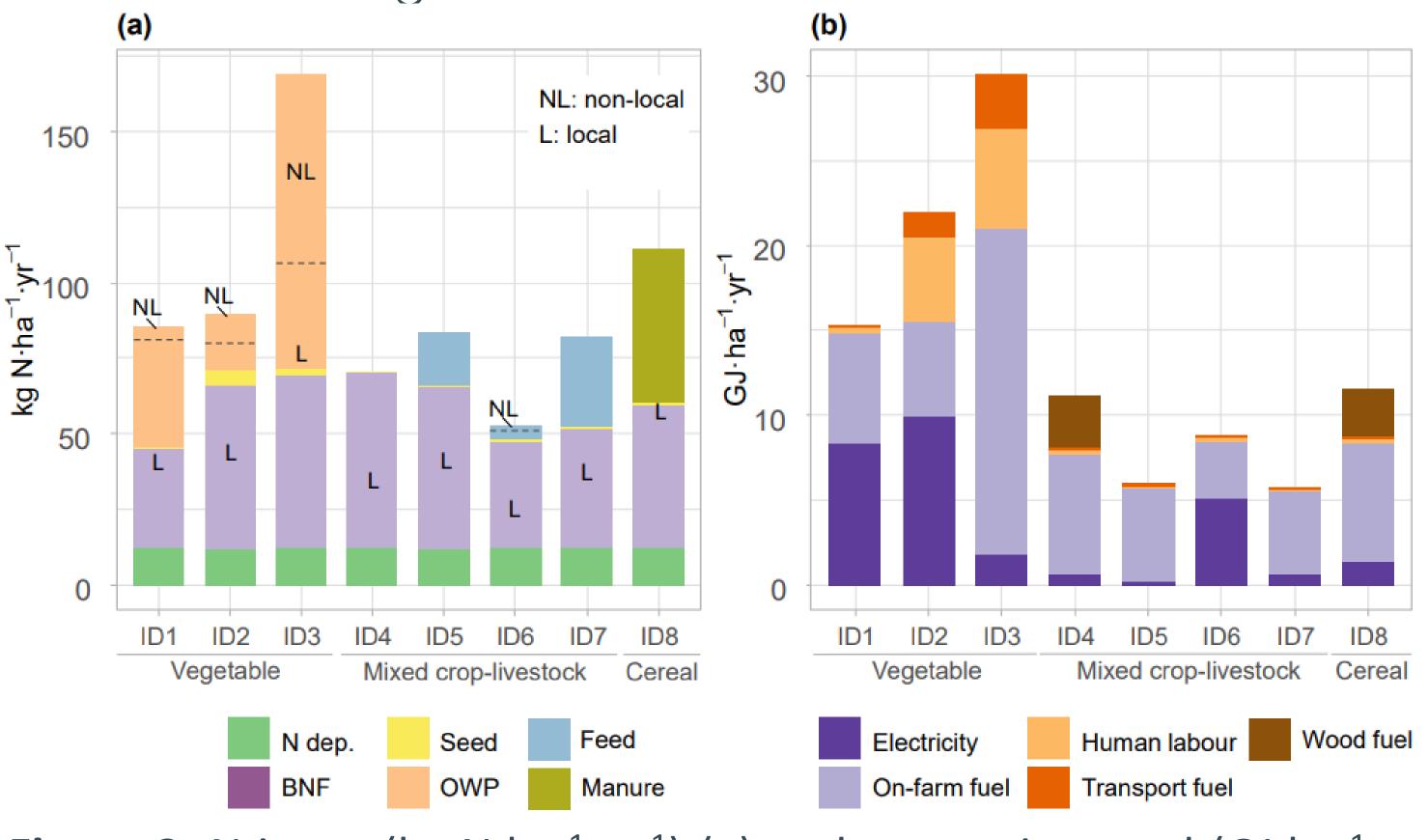
Background

Organic farming (OF) presents a promising solution to address the mitigate negative environmental impacts of agriculture. Central to OF are the principles of enhancing nitrogen (N) self-sufficiency and reducing reliance on nonrenewable energy. However, few studies have explored the interconnected relationship between N flows and energy use in farm management practices¹.

Findings

- BNF was the first or second largest N input (35-72%) (Fig. 2a).
- External input were local about 65-95% for vegetable

Objectives


This study sought to characterize N-flows and energy investment in OF with different types of fertilization and feeding practices.

Methods

We surveyed eight different OF in Brittany, France, including vegetable (ID1-3), mixed crop-livestock (ID4-7) and cereal farms (ID8). N-flows were assessed through a combination of material flow and ecological network analysis². Energy investment were considered as direct energy and human labour (Fig. 1).

farms and 97-100% for mixed crop-livestock farms.

• On-farm fuel was on average the largest (44%) energy investment (Fig. 2b).

Figure 2. N input (kg N·ha⁻¹·yr⁻¹) (a) and energy invested (GJ·ha⁻¹·yr⁻¹) ¹) (b).

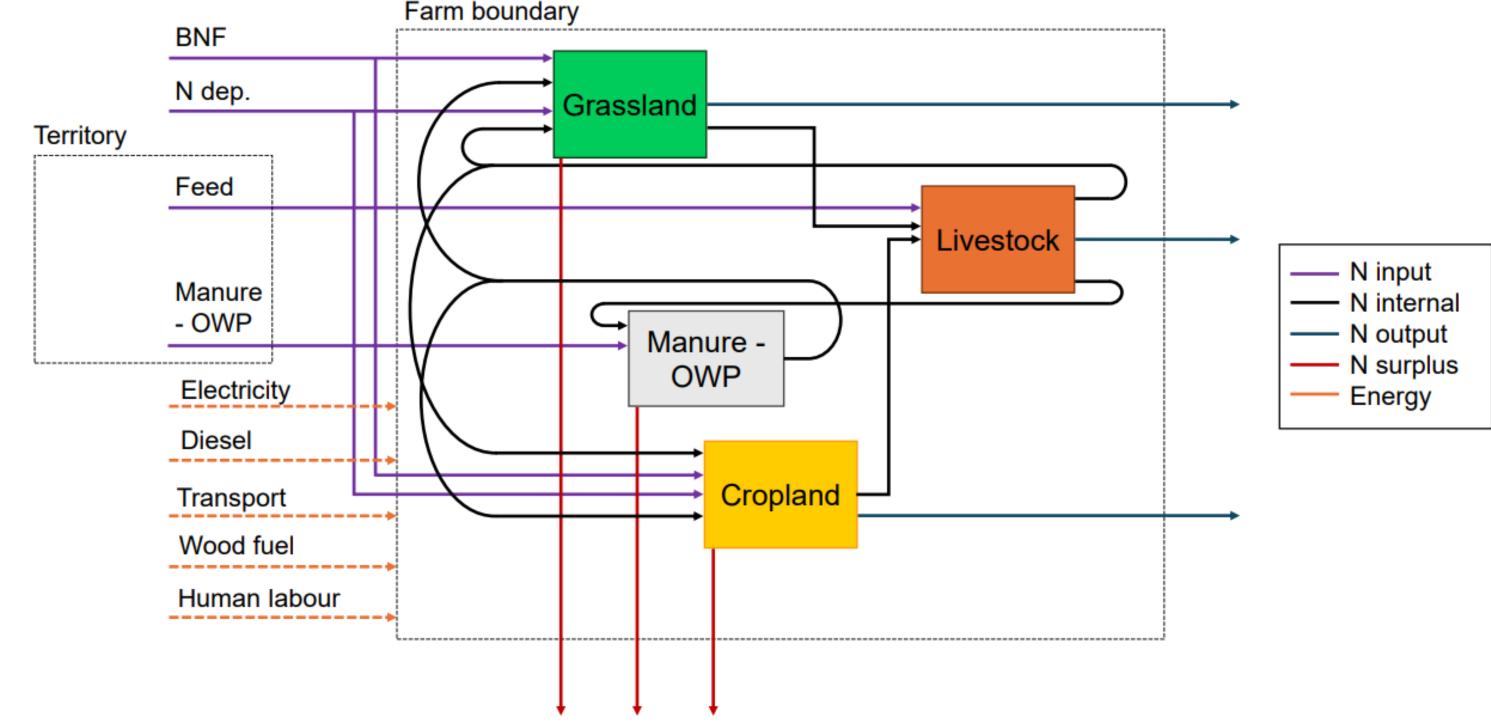


Figure 1. Framework of the N-flow and energy analysis. Imports of feed, manure, and organic waste product (OWP) are divided between local (L) (i.e., \leq 50 km from the farm) and non-local (NL).

We used 5 indicators to assess N-flows:

- Productivity (*prod_{farm}*, kg N·ha⁻¹·yr⁻¹)
- Balance (*balance_{farm}*, kg N·ha⁻¹·yr⁻¹)
- N use efficiency (NUE_{farm} , %)

- Vegetable and cereal farms had the highest NUE as they were the more productive (Table I).
- Mixed crop-livestock farms recycled the most N and were the most self-sufficient.

Table I. Values of N and energy indicators for eight organic farms.

Indicator	Units	Vegetable			Mixed crop livestock				Cereal
		ID1	ID2	ID3	ID4	ID5	ID6	ID7	ID8
prod _{farm}	kg N∙ha⁻¹∙yr⁻¹	26	32	108	34	46	10	19	74
balance _{farm}	kg N∙ha⁻¹∙yr⁻¹	59	58	61	37	37	42	63	37
NUE _{farm}	%	31	35	64	48	55	19	23	67
SS _{farm}	%	52	74	41	100	79	91	63	54
SS _{local}	%	95	84	65	100	100	97	100	100
FCI	NA	0	0	0	0.40	0.45	0.53	0.53	0

Conclusion

- ✓ The availability of local N resources plays a critical role in the overall farm N network flow design. ✓ The diversity of N strategies influence the energy invested in OF.
- Self-sufficiency, both at farm (SSfarm, %) and local (SS_{local}, %) scale
- Finn cycling index (FCI)

Acknowledgments

This study was supported by INRAE (METABIO – intAB) and the Brittany Region (circulAB).

References

¹Chmelíková, L. et al. (2021). Nitrogen-use efficiency of organic and conventional arable and dairy farming systems in Germany. Nut. Cycl. in Agroec. 119.

²Rufino, M. et al. (2009). Analysing integration and diversity in agro-ecosystems by using indicators of network analysis. Nut. Cycl. in Agroec. 84.

N workshop Aarhus university, Denmark

65 Rue de Saint Brieuc, 35000 Rennes *Quentin.bellanger@agrocampus-ouest.fr